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Sensor Fusion, Prognostics, Diagnostics and Failure Mode Control for Complex Systems

Professor Paul Stewart
Head of School of Engineering
University of Lincoln UK

Introduction

There is currently a significant gap in the knowledge of basic science relating to the prognostics,
diagnostics and catastrophic fault-tolerance of complex engineering systems which are often
composed of multiple inter-connected sub-systems. In essence, future air vehicles will be
extremely complicated, but current theory isn’t up to the task of optimally controlling them,
particularly in terms of predicting failure, and making the system robust to sub-system failure.
In order to design well for these complex systems, it is necessary to take on board all the
potential interactions between the vehicle subsystems, and in particular, predicting what happens
when one goes down. This is computationally very intensive, and results in potential
combinatorial explosion (in terms of the combinations of variables involved in an optimal
design) during analysis and algorithmic design. In this research project we have combined our
previous work on complex system simulation, analysis and design, with the work on Modeling
Field Theory (MFT) developed by Leonid Perlovsky AFRL/RY, published in Neural Networks
and Intellect (Oxford University Press 2001, ISBN 0-19-511162-1). This is a promising
methodology to bridge the gap in the basic complex systems theory. A multiple-model adaptive
approach as described by Perlovsky’s MFT would be the most appropriate to drive the learning
of fault-tolerant stable systems, and also the predictive models necessary to perform prognostics
and diagnostics. The use of a fuzzy approach, specifically the use of Sensor Fusion MFT, will
avoid the combinatorial explosion effects which are to be expected in the design of complex
systems.

The approach taken has been to investigate the basic concepts and develop a theory to describe
sensor system architectures that will allow robust/optimal analysis for distributed complex
electrical generation and actuation systems. This is particularly important research which
addresses the exponential rise in the number of sensors available on future aircraft systems which
are embedded in flight and electrical power systems. This exponential growth offers
unprecedented opportunities to predict, analyse and mitigate failure in aircraft systems and sub-
systems. The theory has also been extended to include safety-criticality, diagnostics and
prognostics and failure mode survivability. In particular, we have examined the following
properties: Fault tolerance; Dynamic stability; Predictable interactions in complex systems;
Catastrophic failure: reconfigurable systems; and Complex system prognostics and diagnostics.

The motivation for this project is relatively straightforward. Two core issues complicate
making decisions based upon the information from multiple sensors. Firstly, real-life
sensor data is often noisy; secondly the methodologies for searching the data are often
swamped by either the combinatorial explosion of a multi-dimensional space, or the sheer
volume of incoming data. The project was thus split into two 6-month parts, each of which
produced an interim report. This final report combines each of those reports into a single
document.
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Introduction

The motivation for this project is relatively straightforward. Two core issues
complicate making decisions based upon the information from multiple sensors.
Firstly, real-life sensor data is often noisy; secondly the methodologies for
searching the data are often swamped by either the combinatorial explosion of a
multi-dimensional space, or the sheer volume of incoming data.

The project is thus split into two parts, and this report describes the work
conducted during the first six-month phase to address the problem posed by
noisy sensor data. The author has previously conducted research into the
development of techniques to improve the performance of several standard
search heuristics such as gradient descent, variable neighbourhood search and
simulated annealing in searching increasingly noisy data surfaces [Stewart
2010], a copy of which is attached to this report. One of the most significant
aspects of data search with heuristics is the concept of ‘no free lunch’, that is, a
heuristic which performs well with one particular data stream is not guaranteed
to perform well with another data stream, and often require significant a priori
knowledge and manual tuning. With this in mind, the project overall will focus
on Genetic Algorithms and Genetic Programming, with the aim of developing
methodologies for the automatic creation of models for the interpretation of
multiple sensor data from real-time control systems, both under simulation and
with hardware-in-the-loop. In particular, the ability to raise the level of
generality by removing the choice of model structure as an initial parameter is
considered.

It is common for system analysts to choose model structures based on their
knowledge and experience, and to then tune that model using either classical or
heuristic methods. Removing this input provides the opportunity to create a
hybrid metaheuristic search that produces both the model topology and tunes
the associated model parameters. Furthermore, it provides a means to apply a
hyperheuristic methodology for the automatic creation of models.

Genetic programming (GP) has already been shown to produce controllers and
models that are human-competitive, moreover, producing solutions that infringe
on previous patents showing that GP can be used as an inventing machine [Koza
2000]. However, the approach taken evolves topologies and component values
together, creating a very large single search space. This approach is
computationally intensive and in terms of accelerating convergence, does not
offer many immediate options other than parallelisation. Accepting the fact that
finding a solution is primarily based upon first discovering the correct topology,
it appears that there is opportunity to split the process into two. The concept
investigated in this work is to produce candidate model topologies using a novel
algorithm and to then tune the candidates individually using known
metaheuristics. As will be shown in a later report, this approach provides greater
opportunity to apply novel acceleration methods in addition to parallelisation.



The work described in this initial report, represents the necessary foundation
work performed to develop search methodologies which perform well even in
the presence of the significant measurement noise which is present in all sensor
measurements, and which, if unaddressed can significantly affect the
performance of heuristic methods searching multiple sensor data models.
Subsequently, the performance of Genetic algorithms in the context of noisy data
sources will be addressed.

Context

The author has previously investigated a methodology which makes use of the data
evaluated by the heuristic during the search, and utilises this to generate response
surfaces. These response surfaces are used to generate probability surfaces to provide
the search heuristic with weighted stochastic decision support (figure 1).

Figure 1 Decision support methodology

A weighted stochastic decision support (WSDS) operator based on response surfaces
(RS) was designed, which supports the heuristic and guides the experimental process
to predicted areas of interest in the search space. The methodology was developed on
a 3-dimensional data surface with multiple local-minima and large basin of attraction,
and varying levels of noise. Basic gradient descent (GD), simulated annealing (SA)
and variable neighbourhood search (VNS) were considered, since in most of their
varieties, implementation is simple, and basic tuning rules are readily available,
making them commonly used heuristics in the experimental community. Basic
gradient descent, SA and VNS were supplemented by the WSDS methodology, and
performance compared to the basic form of the metaheuristics. The supplemented
metaheuristics were shown to have significantly improved performance when
searching over increasingly noisy surfaces.

The application of the WSDS method in its basic form is illustrated in figure 2.
The heuristic uses the initial random starting point to initiate its search, storing
each point that is evaluated into an array containing the most recent search data.



The response surface can take any arbitrary order. If the metaheuristic finds a
minimum that is below a preset value, then the procedure terminates. Otherwise,
a weighted random jump is made to escape the local minimum based upon the
support surface.

Figure 2 Diagram showing basic WSDS method combined with heuristic

For the development of this methodology, a realistic data surface with multiple local
minima, plateaux and one global minimum is considered. The standard MATLAB
peaks surface (figure 3) describes a combinatorial process in two variables.

In order to investigate the effects of noise, progressively larger amounts of Gaussian
noise are added to the smooth surface (peaks0) to give peaks 1,2,3 (figure 3 — figure
6). The magnitude of the noise is given as a fraction of the range of values of this
input array. The addition of the noise is achieved by utilising the R function jitter
written by Werner Stahel and Martin Maechler, ETH Zurich. The jitter function adds
a small amount of Gaussian (white) or uniform noise to a vector, matrix or N-D array.
This function is ideal for adding noise to a signal for processing, or generating starting
conditions for chaotic functions. The magnitude of the noise is given as either a
fraction of the smallest difference between values of the input array, or as a fraction
of the range of values of this input array.

In order to examine the effectiveness of the method, another search space is
introduced, namely the bump problem [Keane 1994], which is a smooth surface



comprising many peaks, all of a similar size. Also the optimal value is defined
adjacent to a constraint boundary. It has been noted that these features render it
relatively difficult for most optimisers to deal with [Keane 1995] (Figures 7&8).

Figure 3 Smooth algorithm development fitness landscape: peaks0

Figure 4 Rugged algorithm development fitness landscape: peaksl



Figure 5 Rugged algorithm development fitness landscape: peaks2

Figure 6 Rugged algorithm development fitness landscape: peaks3



Figure 7 Contour map for two-variable bumps function

Figure 8 Two-variable bumps function surface

We will now consider the novel combination of the WSDS methodology with Genetic
Algorithm search

1. Genetic Algorithms

In Genetic Algorithms, suitable solutions to a problem are found through the
manipulation of a population of candidate solutions; a candidate solution is
termed an individual or chromosome. Problem variables are encoded into either a
string of binary digits, integers, or floating-point numbers. Each individual in a
population is evaluated to give its fitness, with which they are then ranked in
order of best solution. The higher-ranking individuals are then selected and
recombined to form a new population (next generation). Probabilistic mutation



occurs according to a mutation rate. in the case of a binary representation this
typically involves flipping binary digits. This process repeats, and through
successive generations, good traits start to dominate the population, which
results in an increase of quality of solutions. A successful GA depends on the
correct choice of population size, number of generations and genetic operator
parameters [Mitchell 1996].

GAs have been shown to be especially suited to multi objective optimisation
[Fonseca 1993], in particular, multi objective genetic algorithms (MOGAs) are
being widely used to tune controllers [Fonseca 1994]. Such is the widespread
use, there are now a number of software packages available to run MOGAs, one
such offering is The MATLAB Genetic Algorithm Toolbox created by Chipperfield
and Fleming [Chipperfield 1995].

1.1 Population Representation and Initialisation

An individual in a population can either be represented as a binary string,
integer or a floating point value. The most common method is to encode
variables as binary strings, which are then concatenated to form a chromosome.
However, the choice of representation is context specific, for example, it is
argued that binary representation obscures the nature of the search [Bramlette
1991], and that real-valued encoding offers a number of advantages in numerical
function optimisation [Wright 1991, Jaskiewicz 1998]. However, the preference
for using binary representations of solutions in genetic algorithms is derived
from schema theory [Holland 1975], which analyses genetic algorithms in terms
of their expected schema sampling behaviour, under the assumption that
mutation and recombination are detrimental. The use of Gray encoding [Caruana
1988], or logarithmic scaling [Schmitendorf 1992] are techniques recommended
to improve binary encoding representations. For the purpose of this work,
operators will be described in terms of binary representation as this is the
representation that is used throughout the project.

The initialisation of the population is commonly achieved by generating
individuals in the population using a random number generator. Other methods
include the extended random initialisation procedure [Bramlette 1991], and
seeding the population with known good individuals [Burke 2000]. It is generally
accepted that a random initialisation performs equally as well, or better than
more sophisticated methods, this is attributed to the increased diversity of the
initial population. Furthermore, alternate methods often require a priori
knowledge of the problem, or need to be used in conjunction with knowledge
based systems.

1.2 Objective and Fitness Functions

To compare the performance of individuals in a population, a measure needs to
be taken of how well they performed in the problem domain. The objective
function is used for this purpose, providing a value for each individual that can be
easily compared. In the case of a minimisation problem, the individual with the
lowest value will signify that it performs best, also known as the most fit. To
determine the relative performance of individuals in a population, a fitness
function is used that transforms the objective value into a measure of relative
fitness. A commonly used transformation is that of proportional fitness



assignment, whereby the individual fitness of each individual is calculated as the
individuals raw performance relative to the whole population. This method leads
to each individual possessing a probability of reproducing according to its
relative fitness. An alternate transformation assigns a fitness value according to
the rank of the individuals in the population [Baker 1987]. This method avoids
highly fit individuals dominating in the early generations, as is the case with the
previous linear scaling approach.

1.3 Selection Methods

Selection is the process in which individual genotypes are chosen from a
population for later breeding. Many methods of selection are based primarily on
a roulette wheel mechanism (figure 9), to probabilistically select individuals
based on a measure of their performance. In figure 9, the size of each segment
corresponds to the fitness value of the associated individual, with the
circumference of the wheel being the sum of all fitness values. To select an
individual, a random number is generated in the interval from zero to the
circumference of the wheel. The individual whose segment spans that number is
selected. This process is repeated, until the desired number of individuals has
been selected. This selection method is defined as stochastic sampling with
replacement (SSR). The segment size remains the same throughout the process
and hence the probability of selecting an individual remains the same. There are
variations to this method that alter the probability of selecting the individuals
during the process, which include Stochastic Sampling with Partial Replacement
(SSPR), and Remainder Stochastic Sampling with Replacement (RSSR) [Goldberg
1991].

Figure 9 Roulette wheel mechanism showing different intervals for each individual

There are, however, two other methods worthy of note that do not use the
roulette wheel mechanism, these are Stochastic Universal Sampling (SUS) and
tournament selection. SUS provides zero bias and minimum spread [Baker
1987]. Where bias is the difference between an individual's normalised fitness
and its expected probability of reproduction, and spread is the range of possible
values for the number of offspring of an individual. The individuals are mapped
to contiguous segments of a line, such that each individual's segment is equal in
size to its fitness, exactly as in roulette wheel selection. Equally spaced pointers



are then placed over the line, as many as there are individuals to be selected. The
position of the first pointer is chosen by a random number from zero to the
distance between pointers. The positions of the pointers then define which
individuals are selected.

In basic tournament selection [Goldberg 1991], a number of individuals
(tournament size) are chosen randomly from the population to compete, the best
individual from this group is selected as a parent. This process is repeated for the
number of parents that are required. If the tournament size is large, then weak
individuals are less likely to be selected.

1.4 Single-point and Multi-point Crossover

The basic operator for recombination, or producing new chromosomes, is that of
crossover. The simplest form of crossover is that of single-point crossover
(figure 10). After selection has taken place, two parents are used to create two
children by randomly choosing a position to split both the chromosomes of the
parents. One part of the chromosome from each parent is then swapped, creating
two children that each comprise of a selection of genetic material from both their
parents.

Parents: Children:

10001010101

Single-point

1 1 m Crossover

1001010101 11001010 M-t

IO 01 -0 crossover

Figure 10 Crossover (Recombination) methods for multi-point and single-point

The method of multi-point crossover is similar to that of single-point, except that
more than one split is made (figure 10). This has two advantages, the first being
that the disruptive nature of multi-point crossover appears to encourage the
exploration of the search space. The second is that parts of the chromosome
representation that contribute the most to the performance of a particular
individual may not necessarily be contained in adjacent strings [Booker 1987].
Other crossover methods include, uniform crossover, shuffle, and reduced
surrogate operator [Mitchell 1996].

1.5 Mutation

Mutation is used to maintain the diversity of the entire population by changing
individuals bit by bit with a small probability pm& [0,1], termed mutation rate.
There is much debate whether high or low mutation rates should be used and
whether these should be static or adaptive. A high mutation rate increases the
level of exploration creating a more diverse population according to



[Michalewicz 2006], which is desirable for more complex combinatorial
problems. However, there have been many proposed static mutation
probabilities which are derived from experience or by trial-and-error. De Jong
suggested pm = 0.001 in [De Jong 1975], with Schaffer et al extending this to a
range of [0.001,0.005] [Schaffer 1989]. Biack used Schaffer’ ’s results in [Back
1992] to propose that the mutation rate should be set according to population
size and length of individuals, giving pm = 1.75/(N*L1/%2), where N is the
population size and L denotes the length of individuals. Miihlenbein in
[Muhlenbein 1992] recommended that pm =1 / L is an acceptable mutation rate
and should be generally “optimal” .

There is, however, evidence, both empirical [Fogarty 1989] for learning control
rules, and theoretical [Back 1992] that the optimal rate of mutation is not only
different for every problem but will vary with evolutionary time according to the
state of the search and the nature of the landscape being searched. Recent work
by Thierens [Thierens 2002] proposes two simple adaptive mutation rate
control schemes called constant gain and declining. Thierens compares these to
fixed mutation rates, and other known self-adaptive mutation rates showing that
they perform favourably in terms of performance with no initial parameters to
configure.

2. Genetic Algorithms and Real-Life Data Surfaces

GAs are shown to be compromised when directing search over significantly
rugged surfaces [Goldberg 1992], such as those surfaces discussed in this work.
As the amount of noise inherent in the surface increases, it is likely that the
number of local optima increases and, unless there is sufficient diversity within
the populations of the GA, this often causes the GA to converge on these local
optima, rather than the global, optimal solution [Goldberg 1989]. Diversity is
important in genetic algorithms as crossing over a homogeneous population
does not yield new solutions [Fogel 2006]. The parameters of a GA can be
improved for such problems, for example using a high mutation rate
[Muhlenbein 1992], larger population sizes [Alander 1992] or by suitable
selection techniques [Goldberg 1991]. A priori knowledge is typically required to
set these parameters, although solutions such as adapting the parameters
throughout the search using deterministic control schemes have been produced
[Fogarty 1989, Baker 1985]. This section introduces the random migration
operator based upon the migration operator that is used in multi-deme (multiple
population) GAs [Mann 1999], and applies this to single-deme GAs supported by
a decision support operator to yield a novel operator called controlled migration.
[t should be noted that controlled migration is equally applicable to the multi-
deme case although this is not investigated here.

2.1 Random Migration

Multi-deme GAs make use of the migration operator to pass individuals between
sub populations according to a pre determined migration rate and migration
interval. During a search, sub populations will receive a new individual from
another sub population that could be from anywhere in the global search space.
The individual that is received is likely to have been evolved in a sub population
that may be converging towards an alternative optimum, thus creating diversity
in the receiving population. In a single-deme (single population) GA, a similar



scheme can be applied where random individuals are introduced into each
generation from the global search space, thus introducing an alternative source
of diversity. A typical GA will use either the incremental/steady state genetic
algorithm (IGA) model [Whitley 1998] or the generational genetic algorithm
(GGA) [De Jong 1992, Vavak 1996]. This section uses the GGA that batch replaces
an entire population each generation, as opposed to the IGA which in typical
applications only replaces one individual at a time. Figure 11 represents the GGA
methodology that is applied in this section.

Initial random population

Evaluatefitness of
individuals

Rank individdalsaccording
to fitness

Repeat until
termination
criteria is met

Selectindividualsfor next
generation

Proba bilisticélly breed new
offspring

Mutate with probabilityall
individuals

Insert new individualsinto
new generation

Figure 11 GGA methodology applied in this section

To insert random individuals into a generation, the following changes are
necessary: In step 4 select fewer individuals that are required to create the next
population; step 7 is then altered to insert the processed individuals from step 6
into a new generation, and to also introduce randomly generated individuals
termed migrants to maintain the population size (figure 12). The term migration
rate defines the number of migrants to insert into the new population, and hence
the number of individuals to select in step 4 will be equal to the original
population size less the migration rate.

Processed individuals Random migrants

New generation
processed individuals+ random migrations

Figure 12 New generation compiled of processed individuals and random
migrants



Using this methodology with the GGA parameters as declared in table 1, the
range of surfaces Peaks0 to Peaks3 and Bumps are searched. The GGA is run 100
times per surface, producing mean results to negate the effects of the inherently
stochastic heuristic.

Table 1 GGA parameters used for search

Table 2 Effects of increasing random migrants across the test surfaces with a
population size of 20, (upper value: mean, lower value: worst case)

Surface peaksO | peaksl | peaks2 | peaks3 |bump | Total
Random
Migrants
0 543 1628 10492 255500 35552 303720
1012 17934 88650 1290183 408221 1806000
5 553 1088 2447 48113 29028 81229
1070 5546 25710 363686 160780 597645
4 631 1016 1906 17468 38432 59453
1145 2401 11743 87780 189995 293064
6 682 1306 1937 9310 18475 36982
1552 4424 7229 53122 107279 173606
) 675 1208 2248 7677 12840 24643
1744 5685 5303 36729 76894 126355
10 804 1580 2417 5259 10455 20515
2365 4747 10250 28208 56045 101615
12 927 1916 2476 8096 9434 22349
4065 6688 9364 28825 43765 92707
14 1152 2617 6453 5390 7180 22792
3842 8566 18447 17123 37563 85541
16 1438 3531 11497 12233 9795 33494
4822 11502 51503 46523 37062 151412
18 4697 13071 31529 48374 12066 109737
13662 58641 105001 214102 68060 459466

Table 2 shows the effect on computations of inserting random migrants into a
population of size 20 for a range of migration rates. A computation is counted as



each evaluation of an individual. It shows that introducing random migration for
complex surfaces such as peaks3 and the bump yields a considerable decrease in
the number of computations compared to having no migrants. Figure 13 and
figure 14 illustrate the effects of the different migration rates across these
surfaces, clearly showing that increasing the migration rate reduces
computations until a critical point where the search starts to degrade. A
justification for this observation is that as the migration rate increases, then so
does the diversity of the population with only a small number of highly ranked
individuals surviving. As the migration rate nears the population size, then the
search is comparable to a random search. Observing the results from the less
complex surfaces it can also be seen that a critical point also exists, albeit to a
lesser degree, where a random migration rate is present that increases the
performance of the GA (Figure 15).

Figure 13 Mean computations on peaks3 surface showing the effects of varying
the number of random migrants for population of size 20



Figure 14 Mean computations on bump surface showing the effects of the number
of random migrants for population size of 20

Figure 15 Mean computations for peaks0, peaks1 and peaks2 showing the effects
of the number of random migrants for population size of 20

The results show how introducing random migration into single-deme GAs can



increase diversity, and hence lead to dramatic search improvements, particularly
on rugged or complex surfaces. However, it is apparent that there is a critical
migration rate that varies according to the complexity of the surface. A high
random migration rate leads to excessive diversity analogous to high mutation
rates, where previous work has shown a similar effect [Spears 1992]. It can be
seen that low to mid random migration rates are a good trade-off between
performance gains for complex surfaces, whilst minimising additional
computation requirements for less complex surfaces. As with other genetic
operators, the introduction of random migration has introduced another
parameter that for improved effectiveness would require a priori knowledge of
the surface to set a random migration rate. However, the next section will show
that by applying the WSDS decision support to random migration, it is possible
to minimise penalties for higher random migration rates on less complex
surfaces.

Controlled Migration

The WSDS method introduced earlier in the chapter is used to provide decision
support to random jumps in gradient decent methods. The same WSDS method
can be applied to random migration to create a novel operator termed controlled
migration.

Figure 16 GGA methodology with addition of WSDS random immigrants

Figure 16 illustrates how the WSDS is integrated into the GGA methodology, with
the additional steps coloured in red. During the first generation, the evaluation
results from each individual in the population are used collectively to provide
the data to fit the normalised response surface to. This response surface is then
used to create the WSDS surface as defined in the accompanying paper.
According to the controlled migration rate, a number of migrants are then



probabilistically selected from the WSDS surface and inserted into the new
generation, along with the individuals processed by the standard GGA operators.
This procedure is repeated for each generation, with the evaluation of each
individual feeding into the data used to update the normalised response surface,
thus the probability of selection of the next controlled migrants are based
statistically on the results of the previous generations.

Table 3 Effects of increasing controlled migrants across the test surfaces with a
population size of 20

Using the GGA parameters presented in table 1, the experiment from the
previous section is repeated replacing the random migrants with controlled
migrants using the prescribed method for a range of controlled migration rates.
Based on the results of the WSDS methodology applied to gradient descent
methods, a 2nd order support surface is chosen.

The search is conducted running the GGA on each surface 100 times to yield the
mean and maximum number of computations as shown in table 3. From the
results it is immediately evident that using the controlled migration gives a
~35% improvement in performance at migration rates of interest compared to
using random migration. Figure 17 and figure 18 illustrate this improvement
using the total mean and max computations respectively across all the surfaces.
Comparing the totals across all surfaces is justified, as although the more
complex surfaces contribute most to the improvements observed, there are no



significant declines in performance for less complex surfaces. Moreover,
controlled migration appears to minimise penalties for higher migration rates on
the basic surfaces (figure 19 and figure 20). This further endorses the generality
of controlled migration as a viable operator to speed-up GA searches, as whilst it
appears to cause no significant detrimental affect, it can provide a major
performance boost on such surfaces as the bump (figure 4.27).

Figure 17 Comparison of random migration vs. controlled migration for total
mean computations across all surfaces



Figure 18 Comparison of random migration vs. controlled migration for total
maximum computations across all surfaces

Figure 19 Comparison of random migration vs. controlled migration for mean
computation on peaks0



Figure 20 Comparison of random migration vs. controlled migration for mean
computation on peaks1

Figure 21 Comparison of random migration vs. controlled migration for mean
computations on bump



Conclusions

This report introduces a novel decision support methodology based upon
response surfaces. The method had been previously applied to add decision
support to the previously random jumps of gradient descent methods commonly
used in combinatorial experimentation [Jaskiewiscz 1998]. The response
surfaces are generated through exploitation of evaluated data that is performed
during the search that would, without the use of metaheuristics, be discarded.
These response surfaces are transformed into normalised contours of the search
area, providing weighted stochastical decision supported jumps. The analysis
had previously compared support surfaces of varying orders against five
separate surfaces varying in complexity, using three different search heuristics.
The decision support methodology is now applied to GAs, first investigating a
mechanism for the introduction of a decision supported operator. Migration in
single-deme GAs of random individuals was investigated as an alternative to
mutation as a means of maintaining diversity in each generation. Random
migration is then demonstrated to provide substantial improvements in the
efficiency of a GA when faced with more complex or rugged surfaces that contain
many local optima. Moreover, this migration operator provides the mechanism
for which to apply decision support, and is introduced as controlled migration.
Through a comparison with random migration, controlled migration is shown to
provide an improvement in required computations by up to a factor of two. With
both migration operators, it is apparent that there is a critical migration rate that
varies according to the complexity of the surface. A high migration rate leads to
excessive diversity analogous to high mutation rates. A low migration rate,
whilst providing minimum risk for computation penalties for simple surfaces,
does not exploit the benefits attainable when applied to more complex surfaces.
However, using controlled migration over random migration is shown to allow
higher migration rates, whilst minimising the detrimental effects on simple
surfaces. This can be explained as whilst exploring simple surfaces, the decision
support surface is more likely to provide a reliable estimate as to where the
minimum or maximum lies. Using high controlled migration rates, it is more
probable that good candidate individuals are chosen.

Next Steps

Now that a methodology for dealing with noisy sensor data has been developed,
Prof Stewart will investigate the development of automatic model generation,
and its integration with the newly developed Controlled Migration methodology,
to complete an integrated environment to process multi source, noisy, sensor
data.
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Overview

In the first (6-month) report, a novel search methodology is presented to
support the operation of problem solving heuristics when dealing with real-life
noisy data measurements. In this (12-month) report, a novel methodology is
presented to accelerate the process of control system design with hardware in
the loop. A representative aircraft system is considered on a real experimental
rig which produces noisy data streams. The combination of methods is shown to
give significant acceleration in identifying acceptable controllers for the flight
control system.

Introduction

For hardware (aircraft)-in-the-loop searches it is desirable, essential even, that
the number of computations (simulations or hardware-in-the-loop trials) is
minimised. Methods of speed-up are therefore required to either enable
parallelisation of the search process or to minimise the number of computations
required.

This report details how the computational framework is designed to be
distributed across multiple processors, allowing computations to be executed in
parallel using a choice of two strategies for speed-up. It then discusses how
controllers can be automatically created with hardware-in- the-loop. The
performance of a particular control solution implemented in hardware is
fundamentally based upon the accuracy of the model from which it has been
derived. It is often the case that controllers that have been produced through
simulation require further tuning in hardware to achieve acceptable results. The
substitution of hardware-in-the-loop for the software model has been shown to
introduce a degree of robustness that is not easily achieved under simulation [1].
This is due to the hardware setup possessing disturbances such as noise on
sensors and the inclusion of unknown plant dynamics that unless pre-empted
would not be included in the software model [2]. However, hardware
experiments are likely to take much longer to evaluate than simulations, making
iterative searches involving hundreds or thousands of trials often unfeasible. A
hybrid approach is presented in this report using hardware-in-the- loop and
software simulations, with the aim of carrying out the least number of
experiments on the hardware. This is shown via a designed experiment to be
successful at exploiting the advantages of using hardware-in-the-loop, whilst
minimising the number of actual hardware experiments.

1. Search System Experimental Configuration
The search system server components, Apache and MySQL, are installed on a
master machine. The MySQL database maintains a list of slave machine [P



addresses that are allowed to communicate with the master, along with the type
of slave (simulation or hardware) they are operating as. Once a job is instigated
on the master, using MATLAB scripts the slaves initiate requests for work; this
method is termed pull technology as opposed to push technology, where the
master would send work to the slaves [3]. The slaves repeat requests for work
until the master responds with data which can contain Simulink files, data
arrays, and MATLAB scripts. Transfer of data is either through the MATLAB
interface, or via the master transferring files into shared folders on the slaves.
Once a slave completes its job, the results are stored directly into the MySQL
database and the slave initiates another request for work.

P

Figure 1 - Photo showing experimental setup, master machine and screen on the
left and four simulation machines on the right connected via KVM to single
screen

The simulation based experiments in this report are all carried out using five
2.0GHz Intel Core 2 Duo E4400 machines with 2GB RAM (figure 2) connected
over 1GB/s Ethernet. Although only five machines are presented here (one
master, four simulation slaves), all the ideas and strategies introduced in this
chapter are scalable. In fact, as the slave machines use pull technology, additional
slaves can be added by simply allowing the master to communicate with them.

It is possible to search for solutions in real-time with hardware-in-the-loop
rather than software simulation using models. This is achieved using National
Instruments LabVIEW [4] hardware and dedicated software installed on an
additional machine. LabVIEW is configured to provide an interface in real-time
between Simulink and the hardware to be controlled. In the setup described, this
additional 6t machine is termed a hardware slave, and is connected up to the
hardware under test. Again, it is possible to have more hardware slaves if
multiple hardware apparatus is available. As will be discussed later, hardware
slaves are treated as special cases; they request and receive work in the same
manner, but work is only given to them if a hardware test is required. Figure 3
shows an overview of the complete setup; it should be noted that as the
communication is over standard Ethernet, the components of the system do not
need to be physically located together. In fact, the configuration used for



hardware-in-the-loop experiments in this chapter are carried out with the
LabVIEW system located remotely. Due to the run time of most hardware
experiments, the communication overheads are negligible for this size of system.

1Gb/s Ethernet Switch

|
—
J

j

b

=r —

Hardware under test

Simulation Simulation Simulation Simulation Search System LabVIEW System
Slave 1 Slave2  Slave3  Slave 4 Master Hardware
Slave 5
KVM
Slave Console Master Console
Figure 2 - Overview of search system setup for parallel and distributed
computations

2. Hardware Based Search

It is common for simulated models of hardware to be used to design controllers.
However, it has been demonstrated by Stewart [1], that even in cases where the model
is of satisfactory accuracy, implementing the developed controller in hardware gives
differing results. It is often the case that further manual tuning of the controller in
real-time is required to match or better the results obtained under simulation.
Automatic tuning of a controller with hardware-in-the-loop has been shown to create
successful controllers.

Stewart [1] has shown through the method of tuning a fuzzy logic controller by a GA
with hardware-in-the-loop, that this can produce controllers with a higher level of
robustness than can be achieved under simulation [5]. The penalty for such a method
is noticeably that of the time required to execute each iteration of the search
algorithm. Designed experiments with hardware-in-the-loop are more likely to take
longer to process than simulations in software. It is assumed in most scenarios that it
is unlikely that multiple hardware slaves are available, either due to cost or
complexity and hence parallel trials are not feasible. This section, therefore,
investigates a search methodology to search for controllers with hardware-in-the-loop
that minimises the number of experiments. Control solutions are expected to perform
as anticipated when implemented in hardware, and exhibit levels of robustness
attributed to typical hardware-in-the-loop tuning methods.

2.1 Pre-selection for Hardware-In-The-Loop

In the case of the search system introduced in this report, where controller topologies
are automatically created, the number of experimental runs is likely to be large. Using
hardware-in-the-loop for all fitness evaluations is expected to be unfeasible. It is
therefore desirable to create a hybrid search strategy whereby hardware experiments
and simulations are used in combination. This can be achieved by primarily using a
model in simulation to drive the search, but using the hardware to validate and correct
the evaluations. The simulations are effectively filtering out candidate solutions that
are known to have poor performance, and hence avoid any unnecessary hardware



experiments. This methodology will be referred to as pre-selection.

Pre-selection is implemented in the search system as illustrated in figure 3.9. Each
individual is evaluated in simulation and its fitness calculated according to the
objective functions. If the fitness of an individual is ranked higher (performs better)
than a set threshold, these individuals are then re-evaluated with hardware-in-the-
loop. The experimental results replace the simulation results and the fitness of the
individual is recalculated. Individuals that have fitness values ranking lower than the
threshold are not evaluated with hardware, and their fitness value remains.

performance Evaluate
better than with
threshold? hardware

Controller Store

Hardware

sent for simulation
Slaves

evaluation fitness value

Store
hardware
fithness value

Figure 3 — Pre-selection method to minimise hardware-in-the-loop experiments

Individuals requiring hardware-in-the-loop trials are put into a queue in the search
system in order of fitness ranking. This queue is then processed by one or more
hardware slaves, with the expectation that by processing the better performing
individuals first, it is more likely that a solution meeting the stop criteria will be found
earlier. As the hardware experiments are executed on dedicated hardware slaves,
simulations of individuals can continue in parallel until all individuals in the current
population have been evaluated. Following the fitness evaluation of all the individuals
in the population, ranking is then performed on this hybrid of data in the conventional
manner.

2.2 Hardware Experimental Setup

To demonstrate the search system with hardware-in-the-loop using pre-selection, this
section will describe an experimental setup for an Electric Thrust Reversal Actuation
System (ETRAS). The More Electric Aircraft (MEA) is a term given to replacing
conventional systems utilising hydraulic and pneumatic systems within the engine and
airframe, with electric systems. An example of research and development in this area
is the Reverse Thrust System. This provides a means of decelerating aircraft during
landing, thus reducing the landing distance required. Traditional Reverse Thrust
Systems are hydraulically operated, research has been carried out to find an all-
electric replacement. A system known as the Electric Thrust Reversal Actuation
System (ETRAS) is now commercially available and is fitted to both power plants
offered for the new Airbus A380 super-jumbo.

The ETRAS has the advantage of being lighter, cost effective, more reliable and



easier to maintain than its hydraulic counterpart. The ETRAS is implemented through
actuators deploying a cowl that acts to deflect the flow of air through side panels that
open up around the engine. This causes the air to flow out of the side openings in the
opposite direction creating Reverse Thrust.

A proof-of-concept demonstration rig has been previously developed to investigate
the control system required to deploy the cowls. The rig comprises three pairs of DC
motors, with each pair consisting of a drive motor connected to a load motor via a
threaded shaft. The drive motor is used to rotate the shaft, providing linear
displacement of the cowl, while the load motor applies time varying loads to the shaft.
The control system is designed to deploy and retract the cowls within a specified time
frame, and to ensure that the position of the three cowls are always synchronised. The
DC motors are controlled using Pulse Width Modulation (PWM), with each motor
having its own controller (Figure 4). The system is non-linear due to the dump circuit
used to dissipate the regenerated power, and uses a power supply of limited current

restricting the maximum torque of the DC motors.
Dump
Circuit

w Clamp Su;nnr?;ngHControllerH PWM ll:_)cr:;?or H Bridge

Current
Sense

Figure 4 — Block diagram of DC motor electronics

The ETRAS test rig is modelled through designed experiments as a non-linear system
to create the Simulink file as shown in figure 5 representing an individual drive
motor. The Simulink file is a model of the ETRAS rig controlled via the LabVIEW
system. However, the model has been simplified to ensure it is not a precise
representation of the hardware to assess whether the search system can converge on a
solution.

48.5
14s+8.0

@ Transfer Fcn

In1

Saturation
(-5,5) 574

™ e :\‘

= Qut1

Transfer Fcn1 Switch

4»0%(

Transport
Delay

Figure 5 — Simulink model of experimental rig

The search system is used to automate the design of a speed controller for an
individual drive motor. The input demand is a pulse from 0 rad/s to 180 rad/s with a
time period of 10.5s and 50% pulse width. The search system is configured to track



the demand with two objectives; to minimise overshoot to less than 0.5%, and to
minimise the integral of time multiplied by the absolute value of error (ITAE) to less
than 15%. The objective for the ITAE is lenient in this case due to the restriction in
rise time caused by a limit on the power supply current.

2.3 Pre-selection Analysis and Results

To test the pre-selection methodology, the following experiment is conducted. The
search system is configured with the parameters in table 1, these values are different
to those used in previous searches thus far. The reason for this is to reduce the worst
case running time of the search. The outer loop generations are reduced, along with
the population sizes for both loops. The number of generations for the inner loop are
increased and this decision is based on experience that if you decrease the population
size, then for parameter tuning, the number of generations should be increased to
enhance the likely hood of finding suitable solutions. The search system is then used
with simulation evaluations only to find control solutions that meet the objective
functions. From the good candidate solutions, the controller that provides the desired
performance is manually chosen from observing the model response (figure 6). This
controller is then implemented on the ETRAS rig using the LabVIEW setup; the
response of the system is shown in figure 7. It can be seen that the performance of the
controller in hardware does not match that achieved under simulation. This is
expected since the simulation is performed on a simplified model, with differences
highlighted by the maximum acceleration achieved at low speeds. The next step in the
experiment is to run the search with hardware-in-the-loop using the pre-selection
methodology, to establish whether a controller of higher quality can be found.

Parameter Value

Search type Continuous template search
Block set Block set A

Outer loop:

Max number of generations 20

No. individuals in a population | 15
Inner loop:

Max number of generations 30

No. individuals in a population | 15

No. of random immigrants 0

Applicable to both loops:

Survival Selection Stochastic Universal Sampling
Recombination method Multi-point crossover
Crossover probability 0.7

Mutation rate 0.00875

Table 1 — Search system parameters for ETRAS rig
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Figure 6 — Simulation response of best performing controller
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Figure 7 — Response of best performing controller implemented on hardware

The search is a multi objective search with two objectives, and therefore two
threshold values are required. Through trial-and-error, the threshold values are
established, observing whether the search is converging. It is reasonable to assume
that the hardware should begin to be used within a few generations of the start. The
rationale for this is that populations in early generations are likely to be very diverse;
exploiting this opportunity means that the hardware evaluates additional global points.
To establish suitable threshold values, a number of shorter searches are performed to
observe the usages of the hardware. Through trial and error, a threshold value for
overshoot is set at 4% and an ITAE of threshold value of 18%. The hardware is
observed to be used between generation 5 and 7 on average using these values.
Having set the threshold values, the search is now initiated with hardware-in-the-loop



using the parameters in table 1.
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Figure 8 — Response of best performing controller found with hardware-in-the-loop

The response from the best controller (having the lowest objective functions), is
implemented in hardware and shown in figure 8. Comparing this to figure 7, it is
immediately evident that the new controller tracks the demand more accurately. The
search was a continuous exploration, and as such the system carried out the maximum
180,000 simulations, with 11,301 fitness values being replaced by hardware
experiments. This represents approximately 6.3% of all individuals performing better
than the threshold values. It should be noted that the hardware experiments were
evenly spread across the generations in the second half of the search. This is most
likely due to the conservation of diversity across the outer loop generations, meaning
that bad topologies that cannot be tuned successfully exist in each generation.

To conclude, the pre-selection methodology has been shown to reduce the number of
hardware-in-the-loop experiments. In the case represented here, it would have taken
approximately 34 days to carry out the search solely with hardware experiments, the
actual runtime with pre-selection is just longer than 2 hours.

Conclusions

This report is concerned with the speed-up of search for hardware- in-the-loop based
searches. The details for carrying out parallel and distributed computations with the
search system are conveyed and used to perform large searches. Two methods of
parallelisation are available due to the two loop feature of the search. In the first
method, the master processes each iteration of the outer loop and subsequent inner
loops serially. The slaves are used to evaluate the fitness values of the inner loop
individuals in parallel. The result of this arrangement is that the processing is a form
that is analogous to standard parallel genetic algorithms, and as such existing parallel
methodologies can be used. The second method involves the master processing the
outer loop only; the inner loop for each outer individual is processed in its entirety by
a slave. Hence, outer loop individuals are processed in parallel. The advantage of this
second method is that communication overheads are reduced by a factor of Gi. X 1.



This is because communication between master and slaves only occurs at each
iteration of the outer loop, rather than at each iteration of the inner loop, as in the first
method.

A methodology for minimising the number of trials when using hardware-in- the-loop
to direct the search is presented. An experiment is conducted demonstrating that
control solutions developed using models under simulation do not always perform as
expected in hardware. The demonstration shows a controller developed from a
simplified model for an Electric Thrust Reversal Actuation System (ETRAS), that
when implemented in hardware does match the performance under simulation. This is
because the controller is fundamentally based upon the accuracy of the model from
which it has been derived. It is sometimes the case that very accurate models are not
available and therefore it is desirable to use hardware-in-the-loop to direct the search.
The main problem with hardware-in-the-loop is that performing hundreds or
thousands of trials is often unfeasible due to time constraints.

To minimise the number of trials needed, pre-selection is introduced that uses a
hybrid of simulation and hardware-in-the-loop trials to direct the search. The fitness
of each individual is calculated using simulations in the first instance; if an individual
performs better than a set threshold, then its fitness value is re-evaluated with
hardware-in-the- loop. The search algorithm then uses the hybrid of fitness data to
rank the results. The ETRAS controller is developed using pre-selection, showing that
a controller can be found that matches the performance requirements. The threshold
values were established through trial and error, through varying the values and
observing whether the search was converging. Ultimately, out of 180,000 fitness
calculations carried out under simulation, only 11,301 (6.3%) were re-evaluated with
hardware-in-the-loop. This is a significant reduction in experimental trials making
hardware-in-the-loop searches feasible.
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